Learning from humans: computational modeling of face recognition.

نویسندگان

  • Christian Wallraven
  • Adrian Schwaninger
  • Heinrich H Bülthoff
چکیده

In this paper, we propose a computational architecture of face recognition based on evidence from cognitive research. Several recent psychophysical experiments have shown that humans process faces by a combination of configural and component information. Using an appearance-based implementation of this architecture based on low-level features and their spatial relations, we were able to model aspects of human performance found in psychophysical studies. Furthermore, results from additional computational recognition experiments show that our framework is able to achieve excellent recognition performance even under large view rotations. Our interdisciplinary study is an example of how results from cognitive research can be used to construct recognition systems with increased performance. Finally, our modeling results also make new experimental predictions that will be tested in further psychophysical studies, thus effectively closing the loop between psychophysical experimentation and computational modeling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

A comprehensive experimental comparison of the aggregation techniques for face recognition

In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Learning a Distribution-based Face Model for Human Face Detection

We present a distribution-based modeling cum example-based learning approach for detecting human faces in cluttered scenes. The distribution-based model captures complex variations in human face patterns that cannot be adequately described by classical pictorial template-based matching techniques or geometric model-based pattern recognition schemes. We also show how explicitly modeling the dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Network

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2005